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Symmetry Energy and the Isotopic Spin Dependence of the Single-Particle 
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Nuclear matter with a given neutron excess is treated within the frame of the i£-matrix theory. General 
expressions for the symmetry energy €Sym and the single-particle potential are obtained with the help of the 
reaction matrix which depends on two different Fermi momenta for neutrons and protons. In particular, an 
expression for the isotopic spin-dependent part U\ of the single-particle potential is obtained, and then 
specialized for single particles at the Fermi surface. With suitable approximations numerical values of esym 

and Ui at the Fermi surface are obtained with the help of the Bruckner-Gammel solution for nuclear matter. 
The results are: €eym = 64 MeV, Ui{kF) = l26 MeV. 

I. INTRODUCTION 

IN the case of nuclear matter with a given neutron ex
cess, characterized by the parameter a= (N—Z)/A, 

the energy per nucleon can be written in the following 
form: 

E/A = — €Vol+2-€s: (1) 

There have been many attempts to calculate the 
volume energy €voi and the symmetry energy €sym as 
well as the equilibrium density of nuclear matter, start
ing with the nucleon forces determined in the free 
nucleon-scattering experiments. Because of the singular 
character of the nucleon-nucleon forces, the problem 
could not have been solved before the iT-matrix theory 
was formulated. The most complete calculation1 based 
on the iT-matrix theory produced a remarkable agree
ment between the calculated and empirically determined 
values of the parameters of nuclear matter. 

This agreement includes also the symmetry energy, 
although the situation here is not quite simple, as some 
of the empirical estimates of this quantity give different 
results. One can only say that the value of esym obtained 
in BG in the most realistic case of the Gammel-Thaler 
nuclear forces2,3 is well within the range of the different 
empirical estimates of this parameter. 

The symmetry energy has been calculated in BG in 
an approximate way, namely, with the help of the reac
tion matrix K determined in the case of N=Z=%A. 
This means the intrinsic dependence of K on the neutron 
excess has not been taken into account. However, in a 
similar calculation4 of the spin symmetry energy of 
liquid He3 at low temperature, it was found that the 
"rearrangement" term, i.e., the term resulting from the 
dependence of the K matrix on the spin excess, was very 
big and essential to achieving the spin stability of the 
system. 

* On leave of absence from the Institute for Nuclear Research 
and the Warsaw University, Warsaw, Poland. 

1 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 
(1958); hereafter referred to as BG. 

2 J. Gammel and R. M. Thaler, Phys. Rev. 107, 291 (1957). 
s J. Gammel and R. M. Thaler, Phys. Rev. 107, 1337 (1957). 
4 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040 

(1958); 121, 1863 (E) (1961). 

In the present paper the rearrangement contribution 
to the symmetry energy of nuclear matter is calculated. 
The general formulas of the symmetry energy are 
derived in Sec. IIA. 

The symmetry energy is closely related to the isotopic 
spin dependence of the single-particle potential. The 
interest in the isotopic spin dependence of the single-
particle potential has increased considerably since the 
observation of the excitation of the analog state in the 
(p,n) reaction by Anderson et al.h 

In Sec. IIB of the present paper, general formulas for 
the isotopic spin-dependent part of the single-particle 
potential Ui{m) are derived for an arbitrary value of 
the single-particle momentum m. 

In Sec. IIC, the general formulas for the single-
particle potential are used to get the value of the single-
particle potential for particles at the top of the Fermi 
sea. The expressions thus obtained show the connection 
between Ui(kp) and the symmetry energy. 

Similar approximations to those which have been 
used in Ref. 4 are applied in Sec. I l l to calculate the 
rearrangement contribution to the symmetry energy 
and the isotopic spin-dependent part of the single-
particle potential. 

In Sec. IV numerical results are presented, based on 
the BG solution of the nuclear-matter problem. The 
results show that the rearrangement terms increase the 
symmetry energy by an appreciable amount, which, 
however, can be considered to be a correction only when 
compared to the other terms calculated in BG. At the 
same time the rearrangement terms produce the most 
important part of Ui. Only by including the rearrange
ment terms in the calculation of Ui does one get a 
satisfactory agreement with the experimental estimates. 

II. GENERAL FORMULAS 

A. The Symmetry Energy 

We consider here the case of nuclear matter with a 
given neutron excess. On the other hand, we assume 
that there is no spin excess, i.e., every momentum state 

6 J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 
126, 2170 (1962). 
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is occupied by two neutrons with spin up and down, 
and/or by two protons with spin up and down, or 
otherwise the momentum state is empty. 

To calculate the symmetry energy €sym, we have to 
expand the total energy E—E{OL) of nuclear matter in 
power series of a, neglecting terms of higher order 
than a2. 

Let us divide the total energy E into the kinetic and 
potential part. 

E(a) = Ekin(a)+Epot(a). (2) 

The expansion of Ekin gives the well-known expression 

£kin(a) = £ k i n ( 0 ) + K y m
k i n a M , (4) 

where 
€ s y m

k i n =f(M F ) 2 /2 i f . (4) 

The potential energy is in the iT-matrix theory given 
by the expression 

£ p o t ( « W E S 3 £<s Z m ( f 3 ) F ( m ^ a ) , (5) 
where 

X (im3/3m V* 3 ' I K(kF
+kF~) | im3/3m V * / ) 

— exchange. (6) 

By t% we denote the third component of the isotopic 
spin of the nucleons. We use the convention h=h(~h) 
for neutrons (protons). The third component of the 
ordinary spin of the nucleons is denoted by s3. By E ( < 3 ) 

we denote the sum over all momenta states occupied by 
nucleons with the third component of the isotopic spin 
equal to /3. That means we have 

E m ^ E - * , (7) 
where the plus (minus) sign is to be used for h=h(~h) 
and means that | m | < ^ + ( ^ ~ ) . By kF+(kF~) we denote 
the Fermi momentum of neutrons (protons) 

* F ± = * K . l ± a ) 1 / 8 , (8) 
where 

|7T-2^3 = ^ / 0 = ( | ^ o 3 ) - 1 . W 

In Eq. (6) we have indicated the dependence of the 
K matrix on the two Fermi momenta by writing ex
plicitly K=K(kF+kF~). The first argument of K indi
cates the Fermi momentum of neutrons, and the second 
one the Fermi momentum of protons. Thus, e.g., 
K(kF~kF+) is the K matrix for neutron excess "—a." 

Now we must change the spin and isotopic spin wave 
functions in Eq. (6) with the help of the known relations 

| ^=±J^ 3
, = =t:i)==U=lws==bl), 

= 2r1i2{\s=ltn8=0)±\s=0tn,=0)}, (10a) 

| fc=±i^=d=§)=| r=ir .=±i) , 

=2-i/2{|r=ir3=o)=b|r=or3=o)}. (iob) 

Let us notice that K does not depend on the sign of 
ms and is diagonal in ms for zero-angle scattering. 
Furthermore, K is diagonal in s, T, and T3. The exchange 
term contributes a factor 2 in the T, s representation. 

Because of the charge independence of the intersec
tion, we obviously have 

K(sm8TTz; kF+kF-) = K(smsT- Tz; kF'kF
+). (11) 

With the help of Eqs. (10) and (11) we get for V, 
Eq. (6), the expressions 

V(m+) = Em'+ (mm' | Kifa+kr) | mm') 

+ Z m - ( m m / | i T o ( ^ + ^ - ) | m m / ) , (12a) 

Vim-) = E „ r ( m m ' | K1(kF-kF+) \ mm') 
+Em' + (mm / 1 Ko(kF-kF

+) | m m ' ) , (12b) 

where V(m±)= V(mszfa=zLi). Notice that V does not 
depend either on s3 or on the direction of m. In Eq. (12) 
the following notation has been introduced: 

K1(kP
+kF-) = j:sm8T TK(stn.TT9=l; kF+kF~), 

K0(kF+kF-) = J E .m. r£ ($w.ZT 8 =0; kF
+kF~). 

Let us notice that Eq. (11) implies that 

Ko(kF
+kF-) = Ko(kF-kF+). (14) 

Inserting V of Eq. (12) into Eq. (5) we get for Epot 

£pot(ce) = E m + Zm' + (mm' [ Kx(kF
+kF-) I mm') 

+ E m " Em'- (mm' I K!(kF-kF
+) I mm') 

+ 2 Em + Em "(mm' | K,(kF
+kF-) \ m m ' ) . (15) 

Now we have to calculate the second derivative of 
Evot{a) with respect to a, for a = 0 , taking into account 
the dependence of kF

± on a as given by Eq. (8). (The 
first derivative vanishes.) 

The second derivative consists of two parts. 
The first part comes from the dependence on a of the 

limits of the sums in Eq. (15). I ts contribution to 
esym

pot, which we denote by €sym
(0)pot, can be easily 

calculated, and the result is 

e^ra^ot=\kFldV,{m)/dm^m^F+lSkF, (16) 

where Vo(m)= V(mk) in the case N=Z—A/2 and does 
not depend on /3. The general definition of Sk is 

Sk=iA(4*)-i [dkFQ&F\T,T(T-$)K(T)\kkF), (17) 

where 

* ( r ) = E . « . K(smsT; kF). (18) 

Let us notice that K(T) is defined for N=Z=A/2 and 
does not depend on TV 

The second part of [d2Epot(a)/fda22a=o consists of 
terms which result from the intrinsic dependence of K 
on kF+ and &F~. The contribution of this second part to 
€sym

pot we shall denote by Aesym and shall call it the 
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rearrangement part of the symmetry energy. This re
arrangement part is given by the following expression: 

A e = A 0 e + A i € , (19) 

where 

A0e=-IA / / ( m n ^ J H ) 
JmJn\ ' \dK d\/ 

X[^i(<tX)+iTo(itX)] mnY 

A1e=iA{ / (kFm\kF( VI (KX) k^m) 

[Jm\ I \6K ax/ I / 

(20) 

+ mmnL2(-
d2 a2 a2 \ 
— + 2 
a«2 ax2 dnd\/ 

XtXiOcXHifoOX)] mn 
) } • 

(21) 

where all the derivatives with respect to A and K should 
be calculated at the point K=X=kF, and where we have 
applied the notation 

Now with the help of the identity 

(22) 

/a a\ 
\BK ax/ 

X)+JRT0(KX)] 

dkw 
d /2T+V\ 

= — Z T ( )K(T), (23) 
<«* \ 2 / 

we can rewrite Eq. (20) in the simpler form 

d 

J m J n \ 

mn &* 
^ i ? 

B. Isotopic-Spin Dependence of the 
Single-Particle Potential 

In the case of a nucleus with a given neutron excess 
the single-particle potential U of a nucleon of momentum 
m depends on ce, and in the linear approximation in a 
can be written in the form 

U(m±)=U0(m)zkiaU1(m), (26) 

where, as before, +(—) refers to the case of neutron 
(proton). We have introduced the factor J to be con
sistent with the form UQ+UIA~H'T of the optical-
model potential suggested by Lane.6 (t, T are the iso-
topic spin operators of the scattered nucleon and the 
target nucleus, respectively.) 

It should be stressed that U is the potential energy of 
a real hole in the nomenclature of Brueckner and 
Goldman,7 and is defined together with the kinetic 
energy, e(m) = fi2m2/2M, as the energy required to 
remove a particle from the system leaving a hole in the 
state (m±). 

/2T+1\ I \ 
XZrf )K(T)\mn). (24) 

Collecting all the terms together we get the following 
expression for the symmetry energy: 

esym= eSYI^
in+\kF[.dV^m)/dm]m=hF 

+2SJfc,+A0€+A1€. (25) 

The first three terms in Eq. (25) are those which have 
been used in BG for computation of the symmetry 
energy. 

e(m)+U(m) = dE/dn{m±), (27) 

where w(m=b) is the occupation number of the state 
m±. 8 Or equivalently we can write 

U(m+) = dEpot/dn(m+) 
= EpQt(NZ)-Epot(N-lmZ), (28) 

U(m~) = dEpot/dn(m-) 
= Evot{NZ)-Evot{NZ- lm) . (29) 

Here, instead of indicating the dependence of jEpot on 
the neutron and proton Fermi momenta, kF+ and kF~1 

we have indicated the dependence of Evot on Z and N. 
This notation is more convenient for our present con
siderations. Of course we can always switch from one 
dependence to the other by means of the relations 

br-*(kF
+y=N/Q, iT-2(kF-y=Z/a. (30) 

One should, however, keep in mind that the potential 
energy (as well as other quantities like the K matrix) 
do depend on all the occupation numbers. Only when 
all the occupation numbers are equal one below the 
Fermi level and zero otherwise this dependence on the 
occupation numbers is reduced to the dependence on the 
Fermi momentum or the number of particles. This is not 
the case after one particle has been removed from the 
system. Thus, e.g., Epot(N- lmZ) of Eq. (28), which 
denotes the potential energy of the system after one 
neutron with momentum m has been removed, depends 
on N, Z, and m. 

e A. M. Lane, Nucl. Phys. 35, 676 (1962). 
7 K. A. Brueckner and D. T. Goldman, Phys. Rev. [117, 207 

(1960). 
8 The reader who is interested only in the value of V\ at the 

Fermi surface is advised to proceed from here straight to Eq. 
(56). The definition of UQ appearing in Eq. (56) is given in Eq. 
(S3). 
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Here we consider the case tn<kF. Eventually we shall 
put m—h? and thus obtain the value of the single-
particle potential at the top of the Fermi sea. This can 
be compared directly with the value of the optical-
model potential at the Fermi surface, since it has been 
shown in Ref. 9 that U defined by Eq. (27) for a particle 
added to the system (m>kp) is the properly defined 
optical-model potential. 

The potential U as defined in Eqs. (28) and (29) 
differs from V of Eq. (12) by the rearrangement 
potential VR. 

U{m±)= V{m±)+VR(m±.). (3D 

With the help of the expression (15) for Epot(NZ), one 
can easily calculate VR. For instance, to get F#(mo+) 
one has to write first an expression for Epot(N— lm0Z), 
which can be obtained from Eq. (15) by including a 
factor (1 — |5mmo) in each of the ]>2m

+ summations,10 and 
by changing properly (N —» N— lmo) the arguments of 
the K matrices. By subtracting Epot(N— lmoZ) from 
Epot(NZ), one gets 

VR(m+) = Zm + r m 2
+ (m 1 m 2 1 KX(NZ) 

-K1(N-lmZ)\m1m2) 

+Lmr£m 2 - (mim 2 | # 1 (Z iV r ) 
-KtiZN-lm)\m1m2) 

+2 Exni+ Em2-(mim21 Ko(NZ) 

-K0(N-lmZ)\mlm2). (32) 

The expression for VR(M~ ) can be obtained from 
Eq. (32) by changing 

K^N- lmZ) -> KX{NZ- l m ) , 

K^ZN-l^-^K^Z-UN), 

K0(N- lmZ) -> KQ(NZ- l m ) . 

With the help of the decomposition (31) of U(m+)7 

we get, according to Eq. (26), 

Uo(m)=Vo(m)+V0R(m), (33) 

Ui(m) = Vi(m)+ViR(m), (34) 

where V0(m) and F0#(m) are the single-particle "model" 
and rearrangement potentials in the case N=Z=%A. 
In our notation they have the forms [which can be 
obtained by putting N=Z=%A in Eqs. (12) and (32)] 

V0(tn) = Zm^mmx | I > i(2T+ 1)K(T) |mmO , (35) 

V0R(m) 

= E « i Zm2(m1m21 IG(NZ) -G(N- lmZ)]«-01 mim2) , 
(36) 

where 

G(NZ) = K1(NZ)+K1(ZN)+2K0(NZ). (37) 

9 K. A. Brueckner, Phys. Rev. 110, 597 (1958). 
10 The factor J has to be included because there are two neu

trons (with spin up and down) in each momentum state. 

In Eqs. (35), (36), as well as in the remaining part of 
our considerations, sums over m, m^, m', n, etc., run 
over m<kF if no special indication (like + , —) is 
attached to the corresponding X) symbol. 

The definitions of V± and V±R are 

7i(f») = 4 [ d 7 ( » + ) / d a ] « ^ 0 

= - 4 [ d 7 ( w - ) / d a ] „ _ 0 , (SS) 

F1B(w) = 4 [ d 7 B ( w + ) / d a ] a - o 
= - 4 [ d 7 * ( m - ) / d a ; U o . (39) 

The dependence on a of V and VR enters through the 
dependence of V and VR on kF+ and IZF~. There are 
two kinds of dependence of V and VR on kF

±'> the first 
one through the limits of the sums in Eqs. (12) and (32), 
and the second one through the intrinsic dependence of 
the K matrices on kF±. Taking both of them into 
account, one easily can calculate Vi and F I B according 
to Eqs. (38) and (39). To simplify the equations we 
again use the notation: K=kF+, A = & F ~ . The result is 

V1(m) = 4,\2Sm+lA [ f m n L f ) 
I Jn\ \ \dK d\/ 

XK^KX) 
m n) l (40) 

V1B(m) = U2\ / ( k*n 
/ . ( ' 

lK1(NZ)-K1(N~lmZ)2 

-\_KX{ZN) -Ki(ZN- l m ) ] | kPn) 

•d d' 

+ - / / (mimaUyf ) 

X [_G(NZ) - G(N- l m Z)] m,m2 •)] (41) 

The right-hand side of Eqs. (40) and (41) is to be 
calculated for a = 0 . This means that all the derivatives 
are to be evaluated at the point f c = X = ^ . I t also means 
that, e.g., [K1(NZ)~K1{N-\mZ)~] in the first part of 
Eq. (41) is the change in Ki{A) caused by the removal 
from the system of one neutron of momentum m. 
Hence, we could have written instead of [K\(NZ) 
-Kl{N-\mZ)~] simply dK1(A)/dn(m+).n However, 
the notation applied in Eq. (40) is more suitable for 
the discussion which follows. 

The form of Vx and Vw given by Eqs. (40) and (41), 
although a bit involved, can be readily evaluated. The 
change in the K matrices caused by the removal of one 

11 Similarly, the second term in the first part of Eq. (40) is 
simply dKi(A)/dn(m—), and is obviously different from dKi(A)/ 
dw(m-h). Namely, Ki} defined in Eq. (13), describes the scattering 
of two neutrons (T3 = l). And for the scattering of two neutrons, 
it makes a difference whether we remove from the system a 
neutron or proton, although they have the same momentum m 
and in the initial system the numbers of neutrons and protons 
are equal. 
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nucleon has been calculated by Brueckner and Gold
man7 in a very good approximation. The expressions of 
Ref. 7 can be easily generalized for the case of Ny^Z. 
After differentiating these generalized expressions with 
respect to K and X one gets formulas which seem to be 
capable of being computed or estimated. 

In the present paper, however, we shall restrict our
selves to investigating the values of V\ and Vw at the 
Fermi surface where Eqs. (40) and (41) simplify 
essentially. 

C. Connection between U at the Fermi 
Surface and esym 

To get the value of U(kF) we have to put m=kF in 
the equations obtained in B. This is trivial in the case 
of Vo(m), Eq. (35), and we get simply 

Vo(kF) = 2Zmjf k^nii <rr \K{T) \kFmA K(T)\kFmi). (42) 

To calculate VoR(kF) from Eq. (36) for VoR(m)7 let us 
notice12 that 

[G(7VZ)-G(^- l m Z)] m = = / c 

d dK dGU\) 
= G{NZ)-G(N-IZ) = —G(NZ) = • 

dN dN 8K 

6K d 

dN 6K 
-ZK1(K\)+K1(\K)+2K0(K\n. (43) 

Equation (43) has to be evaluated at the point a=0 
(K=\=kF), where dK^X^/dK^dKtW/dX. With the 
help of Eq. (14), we then get 

ZG(NZ)-G(N-lmZ)lm~<.«-o 

8K / d d\ 
= — ( - + — ) [ ^ I ( « X ) + Z 0 ( K X ) ] . (44) 

dN\dK d\/ 

By using the identity (23) and the value 

dK/dN=WN (45) 
[which follows from Eq. (30)] we finally get the follow
ing known expression for the rearrangement potential 
at the top of the Fermi sea: 

V0R(k F) = %A\ / (mn 
J m J n \ 

d 
F 

dkF 

/2T+1\ I \ 
XZA )K(T)\mn). (46) 

Here and in several other places of our considerations, 

we take the liberty of switching from the NZ variables 
to the K\ variables. This point has been discussed before 
[after Eq. (29)]. 

The same procedure can be applied in calculating the 
first part of ViR(kF), i.e., the part of the right-hand 
side of Eq. (41) with the single integral fn. We get 

{IK1(NZ)-K1(N-Imzn 

-ZK1(ZN)-K1(ZN-lm)lU-*ta-* 

/d d\ 

\dK d\/ 
A). (47) 

In the second part of VIR, i.e., in the part with the 
double integral Jlnifm2 there are two terms: the one 
containing the derivative with respect to K and the one 
containing the derivative with respect to X. There is no 
problem in calculating the latter term, and by applying 
the procedure just described, one gets 

-kF—[G(NZ)-G(N- l m Z)] 
dX J m=K)a=0 

-%A-I(-: 2 V/Ti(«X)+iS:o(jcX)]. (48) 
d/cdX/ 

In calculating the K derivative we shall use the 
following identity: 

-[G(NZ)-G(N-lKZft 
dK 

= \-lG(NZ)-G(N-laZ)2 
IdK 

f d 

+ —£G(NZ)-G(N- l m Z)] 
[dm 

(49) 

12 Compare the discussion which follows after Eq. (30). 

This is simply the standard rule for calculating a 
derivative. To get the physical meaning of Eq. (49), let 
us notice that G(NZ) defined in Eq. (37) represents an 
effective two-body interaction in the system of N 
neutrons and Z protons. G(NZ)—G(N—\KZ) is the 
change in this effective interaction caused by the 
removal of a neutron from the Fermi surface, i.e., by 
creating a hole in the neutron Fermi surface. On the 
left-hand side of Eq. (49) we shift the neutron Fermi 
surface together with the hole in it, and ask how the 
shift effects this change in the effective interaction. The 
right-hand side of Eq. (49) shows that this shift is 
equivalent to a sum of two shifts: the first one in which 
the neutron Fermi surface is shifted with the hole being 
fixed, and the second one in which the hole is shifted 
with the Fermi surface being fixed. 
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Now the left-hand side of Eq. (49) is simply 

d d dG(NZ) drdK dG(Kk)-
_G(NZ)-G(N-\Z)~]= 

6K 
~[G{NZ)-G{N-\Z)~]= • -=— I -

6K dN duLdN 6K 

6K rd2G(K\) 2 6G(K\) 

6NL 6K2 K 6K ]• (50) 

where we have used the value 

(d/dK)(dK/dN) = - (2/K)(dK/dN) , 

which follows from Eq. (45). 
With the help of Eqs. (49), (50), and by applying 

the procedure described previously, one gets 

kF—[_G(NZ)-G(N- lmZ)] 

d2 d2 d2 \ 

3K2 a\2 dudX/ 

-2k* 
d 

dkF 

d 

/2T+1\ 

-kr\— lG(NZ)-G(N-lmZ)2\ . (51) 

Inserting Eqs. (47), (48), (51) into Eq. (41) and 
making use of Eqs. (36), (46) we finally get 

V1R=A [ (k^n\kp( Vi(/cX) kFn ) 

Jn\ I \3K ax/ I / 

r r / i / a 2 a2 a2 \ 
\A\ (m 1 m,*W—+ 2 

JmJm*\ I Va*2 ax2 a/cax/ 

+i^ 

•w X[£I (KX)+£O(KX)] mim2 — 7 0 B ( * F ) 

—f^F[aF0i2(w)/am]m=^. (52) 

The only remaining part of U(kF), namely Vi(kF), 
presents no problem, and Eq. (40) gives 

V1(kF) = SSkF+A J (kFn AF( W(/cX) kFn) . 
Jn\ \6K ax/ I / 

(53) 

Comparing Eqs. (52), (53) with Eqs. (19), (21), (23) 
we notice that 

U1(kF)=V1(kF)+V1R(kF) 
^^2SkF+^e-\kFl^Vm{m)/^m']rn^F}. (54) 

Let us notice that Eq. (24), when compared with 
Eq. (46), gives 

A0€=-37os(*r). (55) 

With the help of Eq. (25) we can write Eq. (54) in 
the form 

eSym= eaym
kin+lkfZdUo(m)/dm}m=kF+iU1(kF). (56) 

Equation (56) presents the familiar form of the rela
tion between the symmetry energy and the single-
particle energy at the Fermi surface. This relation can 
be obtained directly from the definition of U, Eq. (27), 
which for the state (m, ±:) = (kF

±, =b) can be written 
in the form 

e(kF
+)+U(jkF+, + ) = OE/dN, (57a) 

e(kF~)+ U(kF~, -) = dE/dZ. (57b) 

If we subtract Eq. (57b) from Eq. (57a) and calculate 
ldE/dN-dE/dZ~] from Eq. (1), we get 

2e s y m a-6(^+)-€(^- )+^7(^ + , +)-U(kF~, - ) . (58) 

If we now expand the right-hand side of Eq. (58) in a 
power series of a and keep only terms linear in a, and 
use the form (26) for U(kF

±, ± ) we get our Eq. (56). 
Hence, if one is interested only in the value of Ui(kF), 

one does not have to follow all the considerations of 
Sees. IIB, C, as esym calculated in Sec. HA, and the rela
tion (56) supply one directly with the value of Ui(kF). 
All the considerations of Sees. IIB, C are, however, 
essential for any calculation of V\{m) for w^fe , a 
quantity of considerable importance in problems of 
nuclear structure. Furthermore, the considerations of 
Sees. IIB, C, enable us to see the origin of the different 
parts of Ui, even if we are interested only in Ui(m) 
for m—kF. 

In the remaining part of this paper we shall present 
an actual calculation of esym and Ui(kF), based on the 
BG solution of the nuclear matter problem. 

All quantities necessary to calculate esym, Eq. (25), 
except for Ae have been calculated in BG. An approxi
mate calculation of Aie is presented in Sec. III. As far 
as A0e is concerned, we can obtain its value directly 
from BG by applying Eq. (55). Namely, the rearrange
ment potential at the Fermi surface, VoR(kF), is the 
difference between the single-particle "model" energy 
at the Fermi surface and the separation energy, both of 
them calculated in the case N=Z—A/2. The separation 
energy, however, is at equilibrium density equal to the 
mean energy per nucleon.9 Both the mean energy per 
nucleon and the single-particle model energy have been 
calculated in BG. Hence, one knows from BG the 
numerical value of Voit(kF) and thus of A0e. 

To calculate Ui(kF), after we already know the value 
of €sym, we shall apply Eq. (56). However, to do it we 
still have to know [dVoR(t)i)/dtii]m~kF. We shall 
evaluate this quantity from the values of Vm(m) calcu
lated by Brueckner et al.n 

13 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev. 
118, 1438 (1960). 
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III. AN APPROXIMATE CALCULATION OF A18 

We shall follow here an approximate procedure 
applied previously4 in the calculation of the spin sym
metry energy of liquid He3. Namely, we introduce two 
simplifying assumptions: 

with 

(i) K1{kF+kF-)~K1(kP+), 

(ii) K0(kr+kr-)*>K0(kr'), 

kF'=2-^i(kF+y+(kP-n^, 

(59) 

(60) 

(61) 

where the K matrices on the right-hand side of Eqs. (59) 
and (60) are calculated in the case of equal number of 
protons and neutrons with the Fermi momentum equal 
kF+, kF~ and kFf, respectively. 

The assumption (i) says that the effect of the neutron 
excess on the scattering of two neutrons (or protons) 
is determined by the shift of the Fermi momentum of 
neutrons (or protons). This assumption seems to be 
physically plausible and it corresponds exactly to the 
way in which the action of the exclusion principle is 
altered by the neutron excess. 

The assumption (ii) applies to the more complicated 
case of neutron-proton scattering. One is led to this 
assumption by inspecting the way in which the action 
of the exclusion principle on neutron-proton scattering 
is altered by the neutron excess. Furthermore this 
assumption satisfies Eq. (14). Let us also mention that 
the assumption (ii) satisfies the K0 part of the identity 
(23). 

We shall come back to this point in Sec. IV. 
If we apply the Eqs. (59) and (60) to calculate the 

derivatives appearing in Eq. (21), we get 

Aie=iM / (kFm iF K(T= l)\kFm) 
dkF I / 

1 

+- mn 

+ 4t J m J n \ 

d I \ 
kF LrI(r)mn 

dkF I / 

d2 I 
kF

2 K(T= 1) mn ) \ . (62) 
dkF

2 I 

The expression (62) can be evaluated if we make use 
of the density (or Fermi momentum) dependence of the 
K matrix as determined by Brueckner, Gammel, and 
Weitzner14 (compare also Ref. 15). There it was shown 
that the variation of K with density could, to an excel
lent approximation, be entirely included in the core 

14 K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys. Rev. 
110, 431 (1958). 

15 K. A. Brueckner and D. T. Goldman, Phys. Rev. 116, 424 
(1959). 

repulsion part of the K matrix. According to Refs. 14 
and 15, 

<ri21 K(smsT; kF) \ tvsl) = <ri21 K(smsT) | ^attractive 

core y 

(63) 

where ^attractive was independent of kF and 

< r 1 2 | i ^ ; ^ ) | r 1 2 ' > 
= [ i 4 . ( f o ) / 4 » r « 8 ] « ( f n - O S ^ ' - f c ) , (64) 

where rc is the hard-core radius of the nucleon-nucleon 
interaction (r c=0.4F for the Gammel-Thaler interac
tion) and ro is connected with kF by Eq. (9), which 
implies: 

kFr0=(97r/Syi*=1.52. (65) 

Since Kcoxe acts only in the 1=0 state of the relative 
motion, we do not have to indicate explicitly the value 
of T. We only notice that for T=0: s= 1 (spin triplet), 
and for T= 1: s=0 (spin singlet). 

The short range of Xcore in the configuration space 
makes the Fourier transofrms, which occur in Eq. (62), 
practically independent of m, m \ I t is then easy to 
calculate all the terms of Eq. (62), and one gets the 
following results: 

A 
d 

dr0 
Isingl. (66) 

•C4trlpl.+i4»ingl.) | , (67) 

r / | dK(l)\ \ /rcy< 
I ( k P m \ k F KFml = l — I < 

Jm \ I dkp I / \r0/ I 

A( I (mm'L ZTK(T)\mm'j 
J m J m' \ I dkF I ' 

A J J L ' L 2 K(\) mm/) 
Jm Jm' V I dkF

2 I / 
l/rc\

2 d / d \ 
= - ( - ) —(^0—+lUsingl. . (68) 

3\7V dr0\ dr0 / 

Notice that because of the relation (65) we have 

kpd/dkF— —rod/dro and 

kF2d2/dkF2=ro(d/dro)Zr0(d/dro)+l2. 

For the sake of completeness, let us also write an 
equation for the quantity which appears in Eq. (24) for 
A0e and in Eq. (46) for VoR(kF). 

A I J (mm;\kF 2 > ( W j m m ' ) 
Jm Jm' \ I dkF \ 2 / I / 

= ( - ) ( iOW+^W)!. (69) 
\ f o ' I dr0 I 
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However, in accordance with the remarks made in 
Sec. I I IC [after Eq. (58)] we shall not need Eq. (69) 
as the value of A0e can be directly obtained from the 
BG separation energy. 

IV. NUMERICAL RESULTS AND DISCUSSION 

In the numerical calculations we have used the follow
ing values of the nuclear matter parameters obtained in 
BG with the Gammel-Thaler2'3 nuclear forces: 

ro=1.02 F , 

esym
kin=30.7 MeV, 

2 5 ^ = 9 . 8 MeV, (70) 

kFZdV0(m)/dtn}ms.kF=te.l MeV, 

7oa( iW=12.3MeV. 

In applying the approximate expressions of Sec. I l l , 
we have used the form of the functions As(ro) given in 
Ref. 15. 

From the calculated values of VOR(M) of Ref. 13 we 
have obtained the numerical estimate 

kFldV,R(m)/dnf\m=kF~ - 2 8 . 1 MeV. (71) 

The results of our calculation are 

esym = 6 4 M e V , 

Fi(JfeiO = 70MeV, (72) 

Fia(iW = 5 6 M e V , 

U^kp) = Fi(ybO+ V1R(kF) = 126 MeV. 

To see the importance of the rearrangement contribu
tions, resulting from the intrinsic dependence of the 
effective interaction K on the neutron and proton 
densities, let us write the results obtained without 
taking the rearrangement contributions into account. 

L^symjno rear. = 52 MeV, 

[ F i ( * , ) ] n o rear. = [ ^ l ( W ] n o rear. = 3 9 M e V . ( 7 3 ) 

Let us notice that the value of \JJ\(kF)~\no rear, co
incides very well with the value of Ui(kF) obtained in 
Ref. 16 by applying the impluse approximation. 

Our results show that the rearrangement contribution 
to the symmetry energy, Ae= 12 MeV, is an important 
correction. And in the case of the isotopic spin-depend
ent part of the single-particle potential Z7i, the re
arrangement contribution constitutes its major part 
and approximately triples its no-rearrangement value. 

The empirical estimates of the symmetry energy do 
not supply us with a unique value of esym (see ,e.g., the 
discussion in Ref. 17). By assuming a pure volume 
symmetry energy Green18 finds esym = 47 MeV. By 
assuming that there is also a surface part of the 

16 J. Dabrowski and A. Sobiczewski, Phys. Letters 5, 87 (1963). 
« D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961). 
18 A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958); Phys. Rev. 

95, 1006 (1954). 

symmetry energy, Green18 finds e s y m=61 MeV and 
Cameron19 finds e s y m=63 MeV. 

The situation with the empirical determination of Ui 
is much worse. A review of the situation is given in 
Refs. 6 and 20 (compare also Ref. 21, where the most 
recent estimates of U\ are quoted). One can summarize 
the results of all these estimates by saying that they 
indicate a value of U1(kF) = 100±50 MeV. 

In view of the uncertainty of the empirical estimates 
of esym, Z7i, and of the approximations in our calcula
tions, which we shall discuss in a moment, it is difficult 
to make a precise comparison between our results and 
the experiment. However, one sees that the calculated 
values of esym and Ui given in Eq. (70) are in the range 
of the empirical estimates. 

Let us now discuss the approximations of our calcula
tion. Among the approximations of Sec. I l l , the approxi
mation (ii), Eqs. (60) and (61), seems to be not as well 
justified as the approximation (i), Eq. (59). However, 
the approximation (ii) has been used in calculating only 
a small part of esym [ 4 % ] and Ui [ 9 % ] . Hence the 
possible corrections to the approximation (ii) would 
have only a small effect on the calculated values of 
esym and Uu 

Only after more precise experimental values of esym 

and U\ are available would a more accurate calculation 
of these quantities be desirable. Such a calculation would 
require the knowledge of the exact dependence of the 
K matrices on both the Fermi momenta kF

+ and kF~. 
For this purpose one would have to solve the equations 
of the iT-matrix theory with two different Fermi mo
menta kF

+ and kF~. Or at least one should calculate 
the first and second derivatives of K with respect to 
kF

+ and kF~, which enter into the expressions for esym 

and U\. This can be done approximately by applying 
the procedure of Brueckner et al.7,ld in their calculation 
of the rearrangement energy. 

Much more important for our results is the proper 
value of kF[_dVQR{m)/dm~]m=hF which, however, enters 
only into the calculations of Uh and in our calculation 
constitutes about 30% of Ui. To get the value of 
kF[_dVoB(m)/dnf\mB=kF given in Eq. (71) we have used 
the values of V^m) for m=kF and m=0.1kF calculated 
in Ref. 13. This, of course, is only an estimate of 
kF[_dVQR{m)/dm}m=kF^ and to get a more accurate result 
for Uh one should calculate kF[^dVoR(m)/dm~]m=kF more 
precisely. 

I t should be stressed that the calculated values of 
esym and especially of U\ are sensitive to the density 
dependence of the effective interaction K. Hence, a 
better knowledge of the empirical values of esym and 
Ui could be helpful in determining the density depend
ence of K. 

We finally make one comment concerning the effective 
mass. The effective mass Jkf0* calculated in BG is 

19 A. G. W. Cameron, Can. J. Phys. 35, 1021 (1957). 
20 P. E. Hodgson, Phys. Letters 3, 352 (1963). 
21 J. Dabrowski, Phys. Letters 8, 90 (1964). 
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defined by the equation 

kdV,{k)/dk = 2e(k){[_M/MQ*(k)1-l}, (74) 

where e(k) = h2k2/2M. In problems, where one is 
interested in the real single-particle potential defined in 
Eq. (27), more important than the "model" effective 
Mo* is the "real" effective mass M* defined by the 
equation 

kdU0(k)/dk = kdlVo(k)+VoR(k)ydk 
= 2€(A){[if/Af*(*)]-1} . (75) 

From Eqs. (74) and (75) one gets 

[_M/Jlf o*(A)]- \_M/M*{k)~] 
= -±ke(k)~ldV,R{k)/dk. (76) 

I. INTRODUCTION 

THE decay of Cd117 was first investigated by Cork 
and Lawson.1 They used {d,p) reaction on Cd 

and identified the Cd117 activity of 3.75-h half-life 
from its daughter In117. Coryell and co-workers2'3 ascer
tained the genetic relationship of Cd117 by milking it 
from 1.1-min Ag117 produced in the fission of uranium. 
They reported that the ground state of Cd117 decays 
with a half-life of 50-min and that it has an isomer with 
a half-life of 3-h. Gleit4 used (n,y) reaction on enriched 
Cd116 to produce Cd117. In his study, he observed various 
gamma rays of energies between 90 and 2000 keV. These 
were ascribed to 3-h Cd117m decaying to 1-h In117. He 
has indicated that about 20% of Cd117m decays to the 
50-min ground state by a 440-keV isomeric transition. 

* Member of Chemistry Division, Atomic Energy Establish
ment Trombay, Bombay, India. 

1 J. M. Cork and J. L. Lawson, Phys. Rev. 56, 291 (1939). 
2 C. D. Corvell, P. Leveque, and H. G. Richter, Phys. Rev. 89, 

903 (A) (1953). 
3 U. Schindewolf, J. M. Alexander, and C. D. Coryell, Phys. 

Rev. I l l , 228 (1958). 
4 C . E. Gleit, MIT Laboratory for Nuclear Science, Annual 

Progress Report, 1957, p. 35 (unpublished). 

If we insert into Eq. (76) the numerical values given 
in Eqs. (70) and (71), we get M*(kF)/M=0.94 com
pared to the BG value of M0*(kP)/M=0>73. This is 
only a rough estimate based on the approximate value 
of kF\jdVoR(m)/dm]m~kF given in Eq. (71). However, 
an appreciable increase in the effective-mass results 
from the rearrangement effects. 
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According to him, the 50-min ground state of Cd117 

shows little gamma activity and it mainly decays by a 
beta transition of end-point energy 2300 keV to the 1.9-h 
isomer of In117. The 1.9-h isomer of In117 decays5 partly 
by an isomeric transition of energy 310 keV to the 1-h 
ground state and partly by beta emission to various 
energy levels of Sn117. The maximum beta energy in this 
decay is 1770 keV. The ground state of In117 mainly de
cays by beta emission to the 726-keV level of Sn117. It 
has been suggested4 that the 3-h activity of Cd117 is the 
^n/2 state and the 50-min activity of Cd117 is the Si/2 

ground state. The energy levels of In117 have not been 
established so far. Recently, Tang and Coryell6 have 
reported that the 50-min activity of Cd117 is not pro
duced appreciably by (n,y) reaction on enriched Cd116. 

In the present work a systematic study has been 
carried out to establish the energy levels of In117. Efforts 
have been made to search for the reported isomer of 
Cd117. 

* C. L. McGinnis, Phys. Rev. 97, 93 (1955). 
6 C. W. Tang and C. D. Coryell, MIT Laboratory for Nuclear 

Science, Progress Report No. NYO-10062, p. 14, 1962 (unpub
lished) . 
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The Cd117 activity produced by (n,y) reaction on Cd116 was found to decay with a half-life of ^ 3 h in
dicating that the possible isomer also has a half-life almost equal to that of the ground state. The presence 
of such an isomer was established by beta-gamma coincidence measurements. The highest energy beta 
group as studied in the intermediate image beta-ray spectrometer showed an end point of 2250 keV. The 
singles gamma spectrum was complex in nature and extended up to 2450 keV. Beta-gamma and gamma-
gamma coincidence studies revealed 29 gamma transitions and eight beta groups belonging to the decay of 
both the activities of Cd117. Based on these and the results of sum coincidence and total absorption studies 
a decay scheme with levels in In117 at 310, 590, 660, 750, 880, 1070, 1410, 1700, 1890, 1980, 2120, 2320, and 
2450 keV has been proposed. Possible spins and parities for these levels have been discussed. 


